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Mixing of a conserved scalar representing the mixture fraction, of primary importance
in modelling non-premixed turbulent combustion, is studied by direct numerical
simulation (DNS) in strongly turbulent planar shear layers both with and without heat
release at a reaction sheet. For high heat release, typical of hydrocarbon combustion,
the mixing is found to be substantially different than without heat release. The
probability density function of the scalar and the conditional rate of scalar dissipation
are affected by the heat release in such a way that the heat release substantially
decreases the overall reaction rate. To help clarify implications of the assumptions
underlying popular models for interaction between turbulence and chemistry, the local
structure of the scalar dissipation rate at the reaction sheet is extracted from the DNS
database. The applicability of flamelet models for the rate of scalar dissipation is
examined. To assist in modelling, a characteristic length scale is defined, representing
the distance around the reaction sheet over which the scalar field is locally linear,
and statistical properties of this length scale are investigated. This length scale can
be used in studying values of the rate of scalar dissipation that mark the boundary
between flames that feel a constant scalar dissipation field and those that do not.

1. Introduction
A common approach in the modelling of non-premixed turbulent combustion is

based on knowledge of two variables: a mixture fraction, Z, that represents the
mixture composition, giving the fraction of the material that comes from the fuel
stream; and its so-called scalar dissipation, χ = 2D∇Z · ∇Z (in which D is its
molecular diffusivity), χ being related to the rate of dissipation of fluctuations of
Z in turbulent flow. Since many chemical length scales are often several orders of
magnitude smaller than the turbulent length scales in real applications, modelling
of Z with a thin reaction sheet at its stoichiometric surface can be a reasonable
approach that helps to separate the chemistry from the turbulence. Knowledge of Z

and χ in turbulent flows is important for testing the validity of various models, such
as the laminar flamelet model (Williams 1975; Peters 1984, 1986), the conditional
moment closure (CMC) model (Klimenko 1990; Bilger 1993) and models based
on integration of the transport equation for the probability-density function (p.d.f.
approaches) (Kollmann & Janicka 1982; Pope 1985). The present paper reports DNS
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results for Z and χ in the reaction-sheet approximation (Burke & Schumann 1928)
and explores statistical aspects that are relevant to these models.

The statistics of Z and χ can be expressed in terms of the joint probability-density
function (p.d.f.) of these two scalars, P (Z, χ ). Such p.d.f.s depend, in general, on the
spatial position, x, and time, t , but for brevity of notation these dependences will
not be exhibited explicitly. The expected value of a function of Z and χ , ψ(Z, χ ), is
readily calculated from P (Z, χ ) as

ψ̄ = 〈ψ〉 =

∫ 1

0

∫ ∞

0

ψ(Z, χ )P (Z, χ ) dχ dZ. (1.1)

Different expectation values are of interest in different approaches to modelling of
turbulent combustion.

In the simplest laminar flamelet model, species mass fractions, Yi , for species i,
temperature, T , and density, ρ, explicitly depend only on Z, causing the marginal
p.d.f. P (Z) =

∫ ∞
0

P (Z, χ ) dχ to be relevant for obtaining their expectation values, as
well as for obtaining the expectation value of the rate, ωk(Yi, T , ρ), of any reaction, k.
In the fast-chemistry (reaction-sheet) approximation of flamelet models, however, the
overall rate of heat release at the reaction sheet is proportional to the conditionally
averaged scalar dissipation there,

〈χ |Z〉 =

∫ ∞

0

χP (χ |Z) dχ =

∫ ∞

0

χ
P (Z, χ )

P (Z)
dχ (1.2)

(Bilger 1976a, b). The CMC model in non-premixed turbulent combustion similarly
requires 〈χ |Z〉 for integrating transport equations for the conditional averages
〈Yi |Z〉 (Bilger 1993), prior to obtaining the expectation value by evaluating
Ȳi =

∫ 1

0
〈Yi |Z〉P (Z) dZ. Since p.d.f. approaches also model 〈χ |Z〉 (as well as χ

conditioned on other scalars, Pope 1985), joint statistics of Z and χ are obviously of
interest for all of these approaches.

In their review of direct numerical simulations (DNS) of non-premixed turbulent
combustion Vervisch & Poinsot (1998) identify four different types of relevant analysis.
Since the fourth type concerns effects of finite-rate chemistry, the present study has
no direct bearing on this. It does, however, pertain to the first three types, namely
Z contours, behaviour in directions normal to constant-Z surfaces and one-point
statistics. Especially in the second of these categories, new information concerning
variations of both Z and χ fields in normal directions is obtained, mostly at turbulence
Reynolds numbers higher than any previously available.

The strong heat release typical of turbulent combustion affects the turbulent
flow field mainly by reducing the density, increasing the kinematic viscosity and,
secondarily, by altering the local pressure gradient. Exactly how these influences
occur, however, is not well understood. DNS, experiment and modelling all can
help provide clarification. In the present paper discussion is devoted mainly to DNS
because it is the main focus of this work. While there have been many relevant DNS
studies, most pertain to relatively small or zero heat release and therefore cannot
fully address the influences on the turbulence. They can, however, provide important
information on statistics of mixture fraction and scalar dissipation, and therefore they
are considered here as well.

Scalar fields that do not affect pressure, density or velocity fields in any way will
be termed passive, while those that do will be called active. Scalar fields having
non-zero chemical source terms of finite or infinite rate will be termed reactive,
even though at infinite rates the problem can be reformulated with non-reactive
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scalars having more complicated thermodynamics. DNS has addressed passive, non-
reactive scalars (Kerr 1985; Ashurst et al. 1987; Eswaran & Pope 1988; Nomura
& Elghobashi 1992; Rogers & Moser 1994; Overholt & Pope 1996; Juneja & Pope
1996; Stanley, Sarkar & Mellado 2002), passive reactive scalars (Riley, Metcalfe
& Orszag 1986; Leonard & Hill 1991; Montgomery, Kosály & Riley 1993; Mell
et al. 1994; Lee & Pope 1995; Swaminathan & Bilger 1997; Overholt & Pope 1999),
active, non-reactive scalars (de Bruyn Kops & Riley 2000; Pantano & Sarkar 2002)
and active reactive scalars (McMurtry, Riley & Metcalfe 1989; Miller, Madnia &
Givi 1994; Balakrishnan, Sarkar & Williams 1995; Mahalingam, Chen & Vervisch
1995; Swaminathan, Mahalingam & Kerr 1996; Montgomery, Kosály & Riley 1997;
Livescu, Jaberi & Madnia 2002); much of this research has been discussed in reviews
(Jou & Riley 1989; Givi 1989; Vervisch & Poinsot 1998). The flow configurations
considered range from homogeneous, isotropic turbulence (Kerr 1985; Ashurst et al.
1987; Eswaran & Pope 1988; Leonard & Hill 1991; Nomura & Elghobashi 1992;
Montgomery et al. 1993; Mell et al. 1994; Lee & Pope 1995; Mahalingam et al. 1995;
Overholt & Pope 1996; Juneja & Pope 1996; Swaminathan et al. 1996; Montgomery
et al. 1997; Swaminathan & Bilger 1997; Overholt & Pope 1999; de Bruyn Kops &
Riley 2000; Livescu et al. 2002) to temporally evolving turbulent shear layers (Riley
et al. 1986; McMurtry et al. 1989; Rogers & Moser 1994; Miller et al. 1994) and
turbulent planar jets (Stanley et al. 2002). A great deal of information can be gleaned
from these works.

Many earlier investigations, not cited, employed two-dimensional turbulence
simulations. This approximation excludes vortex stretching and is now known to
overestimate effects of baroclinicity in variable-density turbulent diffusion flames.
Attention therefore is restricted to fully three-dimensional simulations. The current
study concerns mainly active, reactive, temporally evolving shear layers. Previous
three-dimensional simulations of this kind were done by Riley et al. (1986), McMurtry
et al. (1989) and Miller et al. (1994).

Building on the work of Riley et al. (1986), McMurtry et al. (1989) considered
moderate heat release in an ideal gas, Tmax/To = 2, where Tmax is the peak temperature
and To is the reference low temperature. They used a spatial grid of 643 points, typical
of that time, and they focused on the turbulence energetics and vortex dynamics,
treating a one-step, irreversible reaction having a Damköhler number (the ratio of
the large-eddy turnover time to the chemical e-folding time) of Da = 2. Miller et al.
(1994) also considered a one-step irreversible reaction, but with various values of Da,
although for low heat release, Tmax/To = 1.2, using as many as 150 × 150 × 90 grid
points. These two previous studies of reacting shear layers have mainly concentrated
on effects of heat release, a common conclusion being that entrainment rates and the
growth of the shear-layer thickness decrease with increasing heat release. The present
work addresses only the limit Da → ∞ but considers more realistic heat release, up
to Tmax/To � 7, employing as many as 768 × 258 × 192 grid points. It thereby extends
the database to heat-release values of practical interest, with good resolution.

A fully compressible code is employed in the present work, with a convective Mach
number (Bogdanoff 1983; Papamoschou & Roshko 1988) defined as Mc = �u/(c1+c2)
(where �u is the velocity difference of the two streams, and c1 and c2 are the
speeds of sound of each stream) equal to 0.3 in all cases. This value is small
enough that compressibility effects from Mach number are not important. More
precisely, the compressibility effects contribute less than 10% to T and ρ or any flow
properties investigated, their relative influence being of order 1

2
(γ −1)M2, where γ is a

representative ratio of specific heats and M a representative Mach number, M ≈ 2Mc
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Figure 1. Schematic diagram of the temporally evolving shear layer
(x = x1, y = x2 and z = x3).

(the simulations have γ ≈ 1.4 and M ≈ 0.7). Exploratory calculations at other Mach
numbers verified compressibility to be unimportant for all results reported here.

To help clarify influence of heat release, DNS results are reported here for three
different levels of heat release. A number of questions are addressed. How does heat
release change the scaling of the micromixing time scale, as measured by the scalar
dissipation normalized by outer flow variables? How do scalar statistics change with
heat release? What is the effect of heat release on the conditional scalar dissipation?
How is the average reaction-rate term affected by heat release? What are the statistics
of the scalar field at the flame? How is the mechanical-to-scalar time-scale ratio
affected by heat release? What are the differences between laminar and turbulent
mixing at the stoichiometric surface?

2. The flow addressed
Figure 1 is a sketch of the flow configuration considered. The upper stream is air

(approximated as a mixture of oxygen and nitrogen with an oxygen mass fraction
of 0.23) and the lower a mixture of methane and nitrogen with a methane mass
fraction of 0.23. The latter value was chosen because the chemistry that occurs at
the reaction sheet, CH4 + 2O2 → CO2 +2H2O, then yields a stoichiometric mixture
fraction Zs = 0.2, that is the Burke–Schumann sheet which exists at Z = Zs and into
which CH4 and O2 diffuse in stoichiometric proportions from opposite directions, is
at Z = 0.2, as is seen in figure 2. For the more usual case of pure methane reacting
with the air stream, Zs = 0.054, which is too small for convenient resolution of the
temperature gradient on the air side in the simulation. Since a symmetric problem,
Zs = 0.5, is atypical of most real fuel–air or fuel–oxygen combustion situations, the
value Zs = 0.2 is selected as a compromise that preserves the qualitative effects of
real stoichiometry while affording good DNS resolution. There is, in addition, some
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Figure 2. Dependence of the mass fractions on the mixture fraction.

interest in the combustion of inert-diluted fuels, for example to achieve pollutant
reduction, for which the simulation would be more accurate.

To eliminate effects of density differences of the two streams, they are required
to have equal densities, ρo, in all simulations. This forces the influence of density
variations to be associated exclusively with the heat release in combustion, the effects
of which the study is designed to address. Since the fluid is taken to be an ideal-gas
mixture, and pressure is nearly constant because of sufficiently low Mach numbers,
the fact that the fuel has a lower molecular weight than oxygen then requires the
temperature of the air stream to exceed that of the fuel stream. The oxidizer side
thus has a temperature approximately 20% higher than the fuel side for the reactants
considered, but the difference is sufficiently small that its effects on the results are
negligible; in fact, for these mixtures, the results would have been essentially the same
if the two streams had the same temperature but different densities. The temperature of
the fuel stream is To = 298 K in the simulations, but, again, the results are expected to
be quite representative of any such gaseous systems with boundary temperature below
about 600 K, above which some fuel-pyrolysis chemistry and enhanced dissociation at
the flame may begin. Although attention is focused on streams at normal atmospheric
pressure, the results should apply whenever the gas mixture is ideal, certainly at any
pressure below 10 bar.

Specific heats of the species in the ideal-gas mixture are allowed to depend
on temperature, to maintain correct cold-gas values and avoid achieving flame
temperatures that are too high at the reaction sheet, which would result in gas
densities too low there. From thermochemical data (Lide 1999), linear dependences
of specific heats on temperature were constructed over the temperature range of
interest (about 300 to 2300 K). Table 1 summarizes the resulting coefficients in non-
dimensional form. In that table, C0

p denotes the value at 298 K and C1
p the coefficient

of the term linear in the temperature non-dimensionalized by To, that is the non-
dimensional specific heat of species i is Cpi = C0

pi + C1
pi(T/To − 1). Also listed in the

table are non-dimensionalized standard enthalpies of formation �ho and molecular
weights W (g mol−1), obtained from the same source and used in the simulations. The
values of the parameters in table 1 give an adiabatic flame temperature for Zs = 0.2
of Tf = 2028 K.
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Species C0
p C1

p W �h0/CpOo
To

CH4 2.4655 0.8743 16 −17.149
O2 1.0000 0.0639 32 0
H2O 2.0110 0.2187 18 −49.814
CO2 0.9347 0.1321 44 −33.168
N2 1.1397 0.0553 28 0

Table 1. Thermochemical parameters; the reference temperature is To = 298K, and the
reference specific heat is that of oxygen at this temperature, CpOo

= 905 J kg−1 K−1.

To clarify interpretations by focusing attention on as few different physical
phenomena as possible, simplifications were introduced in molecular transport
properties. All chemical species were assumed to have the same diffusion coefficient,
D, so that all mass fractions are completely determined by Z, as shown in
figure 2 (Williams 1985), and effects of differential diffusion are thereby eliminated;
generalized Burke–Schumann formulations (Sanchez, Liñán & Williams 1997) were
not considered because they necessitate using more than one variable of the mixture-
fraction type, and such effects are expected to be small for methane–air mixtures.
The viscosity µ was taken to be constant, to eliminate the effect on the Reynolds
number of the increase of viscosity with increasing temperature. Since viscosity is
proportional to temperature to a power between zero and unity, the resulting tendency
towards ‘laminarization’ at high temperatures through reduced Reynolds numbers is
not likely to be extremely large and is purposely eliminated by this approximation.
There is, nevertheless, a reduction of the Reynolds number caused by the variations
of density through the increase in the kinematic viscosity, ν = µ/ρ. The product
ρD is also assumed constant, so that the Schmidt number, Sc = µ/ρD, is constant.
Also imposed is constancy of the Prandtl number, Pr = µCp/κ , where κ denotes the
thermal conductivity. Because of the variations of the specific heat Cp of the mixture,
κ also varies to maintain Pr constant at constant µ. The approximate value for air,
Pr = 0.7, is employed throughout, while the value Sc = 1.0 is used in the simulations
without chemical heat release. On the other hand, Sc = 0.7 for the simulations with
heat release, a selection made to achieve a Lewis number (Sc/P r) of unity, thereby
allowing the temperature also to be related uniquely to Z at low Mach numbers with
radiant energy loss neglected (Williams 1985). The simulation without heat release
is based on earlier work (Pantano & Sarkar 2002) for which Lewis numbers were
irrelevant and Sc = 1.0 was employed; the two different values of Sc in the present
study are close enough that none of the effects investigated depend measurably on
this difference.

In the temporally evolving shear layer, the average values depend on x2 (the
inhomogeneous direction of the flow) and time. Averages therefore are calculated as
planar averages in the uniform directions, x1 and x3. Both the customary Reynolds
average, ψ̄ , and the density-weighted or Favre average, ψ̃ , defined as

ψ̃ =
ρψ

ρ̄
(2.1)

are used in the paper. Fluctuations with respect to the mean are represented by
ψ ′ = ψ − ψ̄ for the Reynolds averages and by ψ ′′ = ψ − ψ̃ for the Favre averages.
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3. Mathematical formulation, approach and parameters
The unsteady, three-dimensional, compressible Navier–Stokes equations for a

Newtonian fluid composed of a reacting ideal-gas mixture are considered in this
study. Energy conservation is written as a pressure equation to facilitate computation.
Relevant parameters are the Reynolds number,

Re =
ρo�uδω,o

µ
, (3.1)

and the non-dimensional heat release,

Q =
qoYF,f Zs

CpNo
ToνF WF

. (3.2)

In (3.1) the characteristic length δω,o is the initial vorticity thickness of the shear layer,
defined as

δω =
�u

(∂ũ1/∂x2)max

, (3.3)

where ũ1 is the Favre-averaged velocity in the x1-direction, and in (3.2) qo denotes
the enthalpy of the reaction (Williams 1985),

qo =
∑

νiWi�ho
i . (3.4)

Wi is the molecular weight of species i, νCH4
= νF = 1, νO2

= νO = 2, νCO2
= −1,

νH2O = −2 and CpNo
is the specific heat of nitrogen at To. The formulation is

non-dimensional, the unit length being δω,o, velocity �u, time δω,o/�u, density ρo,
temperature To, enthalpy CpOo

To and pressure ρo�u2.
The relationships

YO(Z) = Y e
O(Z) ≡

{
YO,o(1 + φ)(Zs − Z) if Z < Zs

0 if Z > Zs,
(3.5)

YF (Z) = Y e
F (Z) ≡

0 if Z < Zs

YF,f

(1 + φ)

φ
(Z − Zs) if Z > Zs,

(3.6)

where φ = (WOνOYF,f )/(WF νF YO,o) = (1 − Zs)/Zs is the fuel–air equivalence ratio,
and

Yp(Z) = Y e
p(Z) =

WpνpYF,f

WF

(
Z − Y e

F (Z)

YF,f

)
, p = CO2, H2O (3.7)

apply (Williams 1985), and

YN2
= 1 −

∑
i 
=N2

Yi. (3.8)

Here, the subscripts O and F stand for oxidizer, O2, and fuel, CH4, respectively, and
YO,o is the mass fraction of the oxidizer in the oxidizer stream, while YF,f is the mass
fraction of fuel in the fuel stream.

As previously indicated, in the limit of low Mach numbers, with radiant energy loss
neglected, enthalpy and temperature also are related uniquely to Z. The corresponding
non-dimensional relations will be denoted by he(Z) and T e(Z), where (Williams 1985)

he(Z) = hO + (hF − hO)Z, (3.9)

the subscript O and F identifying conditions in oxidizer and fuel streams respectively.
This result for he(Z) determines T e(Z) through (3.5)–(3.8) and the thermochemistry.
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Since the non-dimensional pressure, p, also becomes constant in this limit, from the
ideal-gas equation of state, the non-dimensional density becomes

ρe(Z) =
pγoM

2W (Z)

T e(Z)
, (3.10)

where the Mach number is M = �u/
√

γoRoTo, γo and Ro being the ratio of specific
heats and gas constant for O2 at To, and the normalized average molecular weight is

W =

(
WO

N∑
1

Yi

Wi

)−1

. (3.11)

In the present simulations h and ρ are not given by (3.9)–(3.10), that is, h and ρ

are not explicit functions of Z. Instead, the corresponding mass and energy transport
equations are solved.

The conservation equation for Z is

∂(ρZ)

∂t
+

∂(ρZuk)

∂xk

=
1

ReSc

∂

∂xk

(
∂Z

∂xk

)
, (3.12)

all species mass fractions being determined uniquely by Z from the preceding formulas.
The conservation equations for mass, momentum and energy are

∂ρ

∂t
+

∂(ρuk)

∂xk

= 0, (3.13)

∂(ρui)

∂t
+

∂(ρukui)

∂xk

= − ∂p

∂xi

+
∂σik

∂xk

, (3.14)

and

∂p

∂t
+ uk

∂p

∂xk

= −γp
∂uk

∂xk

+
(γ − 1)

(γo − 1)ReP rM2

∂

∂xk

(
∂h

∂xk

)
+ (γ − 1)Φ

+
γ

γoReScM2

(
T

N∑
1

WO

Wi

dY e
i

dZ
− 1

WC̄p

N∑
1

hi

dY e
i

dZ

)
∂

∂xk

(
∂Z

∂xk

)
. (3.15)

In (3.14) the viscous stress tensor is given by

σij =
1

Re

{
∂ui

∂xj

+
∂uj

∂xi

− 2

3

∂uk

∂xk

δij

}
, (3.16)

and in (3.15) the viscous dissipation is

Φ = σij

∂ui

∂xj

. (3.17)

Appearing in (3.15) is the non-dimensional mixture enthalpy

h =

N∑
1

hiYi, (3.18)

in which

hi =
�ho

i

CpOo
To

+

∫ T

1

Cpi(T ) dT . (3.19)
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The non-dimensional average specific heat of the mixture is

C̄p =

N∑
1

Cpi(T )Yi. (3.20)

The non-dimensional equation of state of the mixture is

p =
ρT

γoM2W
. (3.21)

The specific heat ratio of the mixture, γ , varies somewhat and is given by

γ =
γo

γo − (γo − 1)/(WC̄p)
. (3.22)

The heat-release parameter Q of (3.2) would be equal to Tf /To − 1 if the specific
heat of the mixture were constant. Numerically Q is somewhat larger because of the
variable specific heat. Simulations were performed for the values Q = 0, Q = 3.73 and
Q = 7.46. To achieve these values in the computation, the values of �ho

i in (3.4) were
all adjusted proportionally from the values listed in table 1; the values in that table
give a value of Q from (3.2) equal to 7.46, so that the largest Q is more realistic. For
Q 
= 0, the differential equations (3.12)–(3.15) are coupled because h and Z appear
on the right-hand side of (3.15), with h given by (3.18), in which Yi is determined
by Z while hi is determined by T , dependent on p, ρ and Z through (3.21). For
Q = 0, temperature variations are much smaller, and therefore the approximation of
constant specific heats was employed, leading to γ = γo and

h = γ0M
2 p

ρ
, (3.23)

which does not involve Z and which therefore enables (3.13)–(3.17) to be solved
without considering (3.12), thereby decoupling variations of mixture fraction and
species concentrations from the fluid-mechanics problem.

3.1. Numerical scheme and flow initialization

The calculation proceeds in the following way: suppose that the variables ρ, p, ui

and Z are available at a given time. The temperature is obtained from (3.21) after
using (3.5)–(3.7) and (3.11). The enthalpy is then computed from (3.18)–(3.19). Finally,
(3.12)–(3.15) are solved using explicit time integration to advance the variables in time.

The transport equations are integrated using a compact Padé scheme in space
with sixth-order of accuracy (Lele 1992). The time advancement is performed with
a fourth-order low-storage Runge–Kutta scheme (Williamson 1980). The coordinates
x1, x2 and x3 are referred to also as x, y and z, respectively, throughout the text.
Periodic boundary conditions in the x1- and x3-directions are used and ‘non-reflective’
boundary conditions are imposed in the x2-direction (Thompson 1987). The grid is
uniform in the x1- and x3-directions with an equal grid spacing, �x, in both directions.
In the transverse direction, x2, the grid is uniform across the centre of the domain
enclosing the thickness of the shear layer, even at the last time of the calculation, and
it is stretched gradually in the rest of the domain. The grid spacing in the centre of
the domain in the transverse direction is also �x, while the stretching in the external
part of the domain is 1%. In the simulations with heat release, the mass fractions
of all species are smoothed around Zs (Higuera & Moser 1994) to allow numerical
resolution of the discontinuities in the mass-fraction gradients at Zs . This small
difficulty arises from the Burke–Schumann approximation (Sepri 1976) and can be
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handled numerically. It can be verified that the mass fraction of species i approaches
the values given by the Burke–Schumann solution away from the flame sheet when
the mass-fraction gradient is defined as

dYi

dZ
=

1

δ

{
dYi

dZ

∣∣∣∣
o

+
1

2

(
dYi

dZ

∣∣∣∣
f

− dYi

dZ

∣∣∣∣
o

)(
1 + tanh

(
Z − Zs

δ

))}
, (3.24)

where δ is a smoothing factor and dYi/dZ|o and dYi/dZ|f are the mass-fraction
gradients on the oxidizer and the fuel sides, respectively, given by (3.5)–(3.7).
Exploratory calculations showed that a value of δ equal to 0.02 did not affect
the dynamics of the flow, as shown by Higuera & Moser (1994), and this value was
used in all the simulations.

The flow is initialized to a hyperbolic-tangent profile for the mean streamwise
velocity, ū1(x2), while all other mean velocity components are set to zero. Thus,

ū1(x2) = 1
2
tanh

(
− x2

2δo

)
, ū2 = 0 , ū3 = 0, (3.25)

the value δo = 0.227δω,0 being employed in the simulations. The mean pressure is set
initially to a uniform value and ρ1 = ρ2 = 1 throughout. In addition to the mean
fields, broadband fluctuations are used to accelerate the transition to turbulence.
This is achieved by generating a random velocity field with an isotropic turbulence
spectrum of the form

E(k) = (k/ko)
4 exp (−2(k/ko)

2), (3.26)

where k is the wavenumber and ko the wavenumber of peak energy. The extent of the
initial velocity fluctuations is limited in the cross-stream direction by an exponential
decay given by

exp (−(x2/δb)
2) (3.27)

where δb is δo in the simulation without heat release and 4δo in the simulations with
heat release. A larger value of δb is needed with heat release to excite the most
unstable modes of the shear layer that are then located away from the centre of the
shear layer (Planché 1992). Without heat release, with equal-density streams, the most
unstable mode is located at the centre of the shear layer. Solenoidality is imposed
on this random turbulent field. Such quasi-incompressible fluctuations minimize
compressibility transients (Erlebacher et al. 1990). The initial pressure fluctuations
are obtained from the Poisson equation for incompressible flow.

The mean scalar field is initialized to

Z̄(x2) =
1

2

(
1 + tanh

(
− x2

2δo

))
, (3.28)

and the initial scalar fluctuations are set to zero. Prescription of the initial scalar field
gives initial distributions of Yi and W from previous equations, and the approximation
T = T e(Z) is then used in (3.21) to initialize ρ. For zero heat release, the isentropic
relation, p/ργ constant, is employed instead to initialize ρ.

3.2. Parameters of the simulations

Table 2 summarizes the parameters of the three simulations. The domain size is similar
in all calculations but the number of grid points was larger in the simulations with heat
release. This ensured better resolution of the sharp density and temperature gradients
at the flame sheet, a restriction not encountered in case A. Since the kinematic
viscosity increases with temperature, the Reynolds number, Re, was deliberately kept
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Case A B C

Q 0.0 3.73 7.46
Re 672 5280 5280
koδω,o 3.73 9.61 9.70
Lx/δω,0 81 31 31
Ly/δω,0 40 20 20
Lz/δω,0 20 8 8
Nx Ny Nz 512 × 256 × 128 768 × 258 × 192 768 × 258 × 192

Table 2. Initial parameters of the simulations. The computational domain has dimensions
Lx , Ly and Lz with Nx , Ny and Nz grid points, respectively.

Case A B C

Reω 5700 12 600 10 400
k̃peak/�u2 0.033 0.022 0.023
ε̃peakδω/�u3 6.55 × 10−3 4.89 × 10−3 4.40 × 10−3

Reλ,peak 138 104 82
Reλ,f 103 96 63
χ̃peakδω/�u 13.8 × 10−3 11.1 × 10−3 9.7 × 10−3

ηmin/�x 0.29 0.36 0.46
ηf /�x 0.36 0.46 0.60
ravg 1.31 1.69 1.60
rpeak 1.55 1.93 1.84

Table 3. Final parameters of the simulations. The subscript ‘peak’ identifies the largest value
encountered in the shear layer, Reλ,f denotes the microscale Reynolds number at the mean
flame position, ηmin is the minimum value of the Kolmogorov scale across the shear layer, and
ηf is the Kolmogorov scale at the mean flame position. Here ravg denotes the average (over
the shear layer) of the mechanical-to-scalar time-scale ratio.

larger in the reactive cases and was selected to achieve similar microscale Reynolds
numbers, Reλ, at the stoichiometric location in all three cases. Details of case A are
fully described by Pantano & Sarkar (2002) as case A3 in that paper. The Mach
number that appears in (3.15) was set to M = 0.694.

Since the flow evolves with time, exhibiting a shear-layer thickness that increases
with time, the largest Reynolds number is achieved at the end of the calculations.
This final Reynolds number is denoted by

Reω = Re
δω

δω,0

. (3.29)

Table 3 gives values of turbulence parameters at this Reynolds number, including the
turbulent kinetic energy, defined in terms of Favre fluctuations,

k̃ =
ũ′′

i u
′′
i

2
, (3.30)

and the turbulent dissipation rate, ε̃, defined as

ε̃ =
1

ρ̄

(
σ ′

ik

∂u′
i

∂xk

)
. (3.31)



302 C. Pantano, S. Sarkar and F. A. Williams

Values of ε̃ are used to calculate the Taylor microscale, λ, from the isotropic
relationship

ε̃ = 15ν
u2

λ2
= 5ν

q2

λ2
,

where the turbulence intensity is defined as q =
√

2k̃/3, which was equal to 0.1�u

initially. The Taylor microscale and the turbulence intensity can be combined to
construct a microscale Reynolds number given by

Reλ =
qλ

ν
= 2k̃

√
5

νε̃
. (3.32)

Similarly, the averaged scalar dissipation is defined by

χ̃ =
2

ρ̄ReSc

∂Z′

∂xk

∂Z′

∂xk

. (3.33)

Characteristic values of the Kolmogorov scale, η, defined as η = (ν3/ε̃)1/4, are also
given in table 3. Higher resolution of small-scale turbulence is required in the reactive
cases, and therefore the value η/�x = 0.6 at the flame in case C is larger than the
value η/�x = 0.29 in case A. These values are sufficient for DNS simulations (Moin &
Mahesh 1998). The table also gives values of the quantity r , important for modelling
a conserved scalar in turbulent flow, that denotes the ratio of the mechanical time

scale, k̃/ε̃, to the scalar time scale, Z̃′′2/χ̃ .

4. Average state relations
The change of density by heat release is a key aspect of how combustion modifies

turbulent flow. In presenting results, we therefore consider first the instantaneous
density field and the average density conditioned on mixture fraction. Explicit
dependences of scalars on mixture fraction, as in (3.5)–(3.7), (3.9) and (3.10), are
often called state relations, and there is interest in knowing how well various state
relations may apply in turbulent flows. State relations, especially for the density, are
discussed here.

To see how heat release affects turbulence, it is helpful to consider instantaneous
temperature and density fields for the largest heat release, simulation C. Figure 3
shows such a result, for a vertical cut through the shear layer, taken at the end of
the simulation. The vertical extent of the computational domain was approximately
three times the distance seen in the figure, whence the box size had negligible influence
on the development of the turbulence. There are striking differences between the
temperature and the density fields in figure 3. The regions of maximum temperature
coincide closely with the regions of minimum density, as would be expected for
reaction sheets in isobaric flow, but on the fuel side of these reaction sheets (bottom
stream), the density remains low over an appreciably wider region than that over
which the temperature remains high. The result is a fairly extended region of low
density in the centre of the shear layer, in contrast to the temperature, which peaks
more sharply at the reaction sheet. It will be seen later that the extended low-density
region profoundly affects the turbulent mixing.

The reason for the difference between the temperature and density fields becomes
clear upon examining the state relations. In the problem addressed, the species mass
fraction, and therefore the mean molecular weight, obey perfect state relations. As
seen in figure 4, the associated variation of W is small. In isobaric flows of low
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Figure 3. Isocontours for simulation C (maximum heat release): vertical cuts of
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Figure 4. Scatter plot of the density and temperature and their corresponding Burke–
Schumann limits (thick curves) for simulation C, as well as the non-dimensional average mol-
ecular weight for all simulations.

Mach number, M , it was seen in (3.9) that T (Z) = T e(Z) also obeys a perfect state
relationship, with a nearly piecewise linear dependence, resulting from the linearity
of he(Z); the small departures from piecewise linearity for T (Z) are due to the
dependence of the specific heats on temperature. The scatter plot of T (Z) from the
DNS, shown in figure 4, demonstrates that, in the turbulent flow considered here,
this state relation continues to apply, to a good approximation, on a space–time-
resolved basis, with departures only on the order of 10%. The points cluster closely
around the curve T e(Z), with departures approximately equally above and below the
curve. This is to be expected because the differences, which are associated only with
compressibility and viscous dissipation, should be of order 1

2
(γ −1)M2, approximately

0.1 for M = 0.7 and γ = 1.4.
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Figure 5. Conditional average density and equilibrium density as functions of mixture
fraction for different levels of heat release for simulations B and C.

Given the state-relation agreements of Yi(Z) and T (Z), the corresponding agreement
of ρ(Z), also seen in figure 4, is to be expected from the equation of state (3.21),
since the compressible pressure fluctuations are also of order 1

2
(γ − 1)M2. It thus

becomes clear that the shape of the curve of ρe(Z) is responsible for the differences
between T and ρ seen in figures 3 and 4. Specifically, the proportionality ρ ∼ 1/T ,
that applies because variations of p and W are small, leads to the flat portions of the
ρe(Z) curve on the fuel side of the stoichiometric surface in figure 4. This observation
enables us to deduce how the results would change if the stoichiometric mixture
fraction were different from the value Zs = 0.2 of the simulations. For smaller Zs , the
density would decrease more sharply with increasing Z near Z = 0, leading to a wider
low-density region. Even for the symmetric case Zs = 0.5, the low-density region
would be larger than the high-temperature region as a consequence of the ρ ∼ 1/T

approximate proportionality. To further emphasize the closeness of ρ to ρe(Z), curves
of 〈ρ|Z〉 and ρe(Z) are shown in figure 5 for simulations B and C. The precise
magnitude of the heat release is not critical to the state relation (provided it is not
unrealistically small); decreasing the heat release merely increases the approximately
constant minimum density that prevails over much of the central part of the mixing
layer. Qualitatively, there always is a central region of low density bounded by two
interfaces with the dense fluid in the free streams.

In variable-density flows it can be useful to use Favre p.d.f.s (Bilger 1977),

P̃ (Z) =
1

ρ̄

∫
ρP (ρ, Z)dρ. (4.1)

A consequence of the state relation for density is that, from (4.1),

P̃ (Z) =
ρe(Z)

ρ̄
P (Z). (4.2)

It follows further that, for any random variable ψ ,

P̃ (Z, ψ) =
ρe(Z)

ρ̄
P (Z, ψ), (4.3)
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Figure 6. Average density profiles for different levels of heat release and an instantaneous
profile for simulation C (thin line).

and so

P̃ (ψ |Z) = P (ψ |Z), (4.4)

implying the equivalence of Z-conditioned Favre and Reynolds averages,

〈ψ̃ |Z〉 = 〈ψ |Z〉. (4.5)

In addition,

〈ρψ |Z〉 = ρe(Z)〈ψ |Z〉. (4.6)

A number of implications thus arise when the state relation ρ = ρe(Z) is a reasonable
approximation.

5. Average flow statistics
A representative instantaneous density profile for simulation C, illustrating the

typical non-monotonicity that results from turbulent eddy turnover, is shown in
figure 6. The instantaneous and conditioned density variations are reflected in the
average density profiles also shown in figure 6, taken at the end of the simulation in
all the cases. Since the largest Reynolds number occurs at the end of the simulation,
all subsequent results also are shown at the end of each DNS, unless otherwise stated.
The large variations in the mean density associated with heat release are evident
in figure 6, resulting in average maximum density ratios ρ̄min/ρ̄max of 0.35 for case
B and 0.23 for case C, compared with maximum instantaneous density ratios of
ρmin/ρmax = 0.29 and ρmin/ρmax = 0.18, respectively. The effect of such large density
changes on the turbulence evolution becomes clear upon examining the turbulent
kinetic energy, turbulent dissipation, scalar variance and scalar dissipation.

Figure 7 shows profiles of both Reynolds-averaged and Favre-averaged (a)
streamwise velocity, and (b) mixture fraction, across the shear layer for the highest
level of heat release. Although there is little difference between Reynolds and Favre
averaging here, the Reynolds-averaged profiles lie below the Favre-averaged profiles
on the fuel side of the domain, x2/δω � 0.25, and above them on the oxidizer side,
x2/δω � 0.25. The differences between these curves can be traced to the definitions of
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at different levels of heat release for case C; (a) average streamwise velocity and (b) average
mixture fraction.

the Favre and Reynolds averages, which result in

ũ1 − ū1 =
ρ ′u′

1

ρ̄
(5.1)

and

Z̃ − Z̄ =
ρ ′Z′

ρ̄
, (5.2)

the cross-fluctuations on the right-hand sides being positively correlated on the fuel
side and negatively correlated on the oxidizer side. This is understandable in that
higher Z tends to be associated with higher ρ on the fuel side and with lower ρ on the
oxidizer side. Similarly, u1 is positive on the fuel side, where Z is larger, and negative
on the oxidizer side, where Z is smaller (figure 1). As expected these effects are larger
for Z than for u, because of the good state relation for ρ, just discussed, but not for
u1, and they increase in proportion to heat release, being absent in case A.

Since the constant velocity difference, �u, is imposed in the shear layer, the turbulent
kinetic energy, k̃, defined in (3.30) and Favre-averaged Reynolds stresses, ũ′′

i u
′′
j , are

expected to scale as �u2. Since the vorticity thickness, δω, is a direct measurement of
the mean velocity gradient across the shear layer, it serves to scale the x2 dependence
of k̃, while the momentum thickness,

δθ (t) =
1

ρo�u2

∫ ∞

−∞
ρ̄

(
�u

2
− ũ1

)(
�u

2
+ ũ1

)
dx2, (5.3)

does not collapse the widths of profiles in the three cases and is not used further.
Figure 8(a) shows the resulting normalized k̃ profiles for different levels of heat release,
while figure 8(b) presents associated normalized ε̃ profiles with the same scaling, where
ε̃ is defined in (3.31). These profiles exhibit almost identical shapes for the simulations
with heat release, demonstrating the usefulness of the non-dimensionalization. With
heat release, however, the k̃ levels are 30% below those without, and the ε̃ levels
are 40% below. The reduction in k̃ by heat release has already been observed in
DNS calculations of shear layers with lower levels of heat release by McMurtry et al.
(1989) and by Miller et al. (1994). This indicates that rather little heat release is
needed to bring about this change, and the present results suggest that higher levels
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Figure 9. Scalar variance (a) and dissipation (b) variations across the shear layer for three
different levels of heat release (case A, B and C).

of heat release have relatively little effect. While the overall widths of the profiles are
approximately the same, the ones with heat release have a somewhat different shape,
narrower in the central region. Figure 8 also shows that the heat release tends to shift
the location of the peak generation of turbulent kinetic energy towards the side of the
shear layer where the stoichiometric surface is (when Zs 
= 0.5). This is a consequence
of enhanced generation of turbulence through the strong density fluctuations in the
vicinity of the reaction sheet.

Figure 9 shows the effects of heat release on the profiles of the scalar variance,
Z̃′′2, and χ̃ , with the same non-dimensionalization as employed in figure 8. Heat
release has the same general effect on these profiles that was observed for the k̃ and
ε̃ profiles, that is narrowing the central region and lowering of the peak values. The

locations of the peaks of Z̃′′2 and χ̃ also coincide approximately with those of k̃ and
ε̃, for the same reason. The reduction of the peak χ̃ is less pronounced than that
of ε̃. Comparison of figure 8 with figure 9 indicates a larger reduction of the profile
thickness with increasing heat release for the scalar quantities in comparison with the
turbulence quantities. This implies that the scalar integral scale is reduced more than
the velocity integral scale at the same heat-release level, consistent with effects on
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ratios of time scales, discussed below. The smaller reduction of peak value coupled
with the narrower peak for the scalar indicates that the effect of Q is approximately
the same for the velocity and scalar quantities when integrated across the shear layer.
Since without heat release (case A) the profiles in figures 8 and 9 statistically on
the average must be symmetric about x2/δω = 0, the observed departures from this
symmetry are reflective of the deviations of computed averages from the true expected
values that are present in DNS because of finite statistical sample size.

The effect of Q on spectra of the velocity and scalar fields also is of interest, but
differing Reynolds numbers for different values of Q in these simulations obscured
possible influences of heat release. Spectra are therefore not shown here.

A measure of scalar mixing efficiency that has been found useful experimentally
(Hermanson & Dimotakis 1989) is defined conceptually as

δPm
=

∫ ∞

−∞

ρ̄ỸP

ρoYP (Zs)
dx2 (5.4)

and has been called the product mass thickness. This thickness has been inferred
from temperature measurements in spatially evolving planar shear layers and plotted,
normalized by the 1% thickness based on the mean temperature profile, δ1, as a
function of a measure of heat release, �ρ/ρo, where �ρ is ρo minus the minimum
mean density seen in figure 6. In a self-similar evolving mixing layer δPm

/δ1 is a constant
which, in principle, could depend on heat release. Figure 10 shows the experimental
data and the results of the three present simulations. Although temporally rather
than spatially evolving, the simulations are seen to produce results that are in good
agreement with experiment. They further support the conclusion that there is a
systematic reduction in δPm

/δ1 with increasing heat release, and they extend to higher
heat release than the experiments, indicating a decrease from 0.25 with no heat release
to 0.1 at large heat release.

6. Ratios of time scales
Turbulence time scales are readily extracted from the preceding results. A

mechanical (large-eddy) time is

τK = k̃/ε̃, (6.1)
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and a corresponding scalar time scale is

τZ = Z̃′′2/χ̃ . (6.2)

The ratio of the mechanical time scale to the scalar time scale is the time-scale ratio

r =
τK

τZ

, (6.3)

which is often assumed to be unity in turbulence modelling (Jones 1994). There are
uncertainties concerning possible dependences of r on Q and Re. In the present
simulations, in principle r may vary with x2, and an average ratio across the shear
layer may be defined as

ravg(t) =
1

δω(t)

∫ δω/2

−δω/2

r(x2, t) dx2. (6.4)

Table 3 lists both ravg and the peak value of r . All values of r were found to be within
20% of ravg , and, in particular, no systematic dependence of r on x2 was found to
exist, there being only gradual fluctuations of r with x2, at about the 20% level. The
only clear systematic dependence of any parameter on r is that of the heat release
Q. For Q = 0, it was observed that r ≈ 1.2, while in the two simulations with heat
release, r was larger by about 40%, r ≈ 1.6. It may therefore be concluded that a
relatively small amount of heat release (decreasing the density by something like a
factor of two) appreciably increases the ratio r , but additional heat release then has
a negligible effect.

There are somewhat conflicting results in the literature concerning the effect of Re

on r . Some information related to this can be extracted from the present simulations.
The vorticity thickness δω increases slowly with time in the simulations, resulting in a
slow increase of Re. The growth, dδω/dt ≈ 0.1�u, is slow enough that time-dependent
effects are unlikely to be important, but Re increases by a factor of about 2.5 from the
beginning to the end of the simulations. Results, such as those in table 3, where the r

values are averages over the last third, mainly pertain to conditions towards the end
of the simulations, and correspond to the largest Re. The value of rm was calculated
as a function of time during these simulations, to explore possible influences of Re.
A tendency for rm to increase with Re was evident, but that tendency was very small.
With heat release, rm initially increased from about 1.4 to about 1.6 then remained
fairly constant as Re increased further, while for Q = 0 there seemed to be a gradual
variation from slightly less than 1.2 to about 1.3, the value in table 3. The results
thus suggest that the Reynolds numbers of the simulations were large enough that
the effect of Re on r was very small.

Warhaft (2000) measured r in decaying grid turbulence with a mean scalar gradient
and found an asymptotic value of 1.5, very close to our values. On the other hand,
Tavoularis & Corrsin (1981) report values between 2.17 and 3.12 for homogeneous
sheared turbulence. It is very difficult to measure r accurately in turbulent combustion,
and Chen & Mansour (1997) estimate values between 0.2 and 1.46 in turbulent reacting
hydrogen jets, the largest of which agrees with our results. Computationally, Spalding
(1971) was able to calculate the mean scalar evolution in a round turbulent free jet
with r ≈ 1.8 in k − ε modelling. More recent modelling studies, employing values not
too different from ours, include the works of Newman, Launder & Lumley (1981),
Shih & Lumley (1986), Shih, Lumley & Janicka (1987), Hirai & Takagi (1991) and
Gharbi et al. (1996). Overholt & Pope (1996) report DNS of forced isotropic
turbulence with a passive-scalar gradient, obtaining a systematic increase of r with
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Figure 11. Scalar contour plots at times when the vorticity thicknesses are approximately
equal for (a) case A, Reλ,m = 130 and (b) case B, Reλ,m = 95. Thick lines are Z = Zs ± 0.1.

Re, from 1.8 to 3.0. This result disagrees with ours, possibly because the forcing to
achieve stationarity contributes to the turbulent kinetic energy in a manner different
from natural turbulent shear flows.

7. Scalar p.d.f.s
Probability-density functions of the mixture fraction help to show the extent of

mixing to the molecular level. Delta functions at Z = 0 and Z = 1 theoretically
identify unmixed fluid and may be said to mark intermittency of the scalar field. Like
experiments, the simulations smear delta functions into continuous divergences.

An idea of how heat release modifies the p.d.f.s can be obtained by studying the two
representative instantaneous vertical cuts of Z isopleths across the shear layer shown
in figure 11, where the horizontal and vertical axis are the x1 and x2 coordinates of
figure 1. The times of these two cuts were selected to correspond to approximately the
same δω for the simulations without heat release at the top and that with heat release
at the bottom. There are significant differences in the shapes of the boundaries of the
two darkest regions, for example, as well as in the shapes of the boundaries of the two
lightest regions. In figure 11(a), these boundaries show undulations of much larger
vertical extent than in figure 11(b). This difference is reflected in similar differences in
the corresponding boundaries seen in figure 3 for temperature and density. It implies
a much greater degree of external scalar intermittency in the simulation without
heat release. In the extreme, without heat release there are instances in which the
darkest and lightest regions almost border each other, as at the far left of figure 11(a),
but this never occurs with heat release. The comparatively large-scale organization
that occurs without heat release, with large eddies separated by these mixing regions,
is consistent with the earlier DNS results of Rogers & Moser (1994). The differences
may be related to the different linear stability properties of the shear layers (Shin &
Ferziger 1991; Planché 1992; Day, Mansour & Reynolds 2001).

Figure 12 compares scalar p.d.f.s for late-time simulations with heat release (b) and
without (a). The statistics are obtained from the DNS results in the (x1, x3)-plane (by
constructing histograms with 64 bins, giving sufficient resolution without excessive
fluctuations) at five different values of x2, namely those at which Z̄ takes the values
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Figure 13. Scalar p.d.f. at the value of x2 where Z̄ = Zs = 0.2 for three different levels of
heat release (cases A, B and C).

0.1 to 0.5. Not shown are corresponding results for Z̄ from 0.6 to 0.9, but without heat
release they are symmetrical (as they must be), the divergences seen at Z = 0 now
appearing at Z = 1. With heat release they are qualitatively similar but quantitatively
different, the main difference being that they are slightly narrower at the intermediate
values of Z̄ for Z̄ > 0.5. Heat-release results are shown only for simulation C because
those for B are qualitatively the same.

The main difference between the two sets of results in figure 12 is the evident
intermittency without heat release for Z̄ 
= 0.5, a behaviour that is not seen with
heat release. Unlike the sequence in figure 12(b), that in (a) is distinctly bimodal at
Z̄ of 0.2 and 0.3, with both the mixed-fluid peak and the divergent intermittency
peak at Z = 0. The comparisons can be seen more accurately in figure 13, where
the results in figure 12 at Z̄ = 0.2 = Zs are plotted on the same scale, along with
the corresponding results of the other heat-release DNS. Clearly, the implied delta
function at Z = 0 is present in figure 13 only for case A (Q = 0). With heat release,
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the mode in figure 13 does not coincide exactly with the mean, it being closer to
Z = 0.1 than to Z = 0.2, and increasing Q is seen to raise and sharpen the peak of
P (Z).

The p.d.f.s with peaks that nearly coincide with the mean and that move to higher
Z as Z̄ increases across the mixing layer have been called ‘marching’ (Mungal &
Dimotakis 1984) in that they march uniformly across the shear layer with Z̄, while
those having modes that do not line up with the mean are ‘non-marching’. In this
terminology, the p.d.f.s for Q = 0 are non-marching, while those with Q 
= 0 are
more nearly marching, although not exactly so, especially at the extremes of Z̄.
Non-marching p.d.f.s are characteristic of flows with external intermittency, which
exhibit large-eddy engulfment of fluid then small-scale mixing. The results obtained
here are consistent with those of previous computations (Rogers & Moser 1994) and
experiments (Mungal & Dimotakis 1984; Clemens & Mungal 1995; Clemens & Paul
1995; Starner et al. 1997; Miller, Bowman & Mungal 1998; Barlow et al. 2000) in indi-
cating that heat release suppresses intermittency and promotes marching p.d.f.s. With
values of Q representative of turbulent combustion, cross-stream structures do not
penetrate the low-density region and therefore cannot span the entire width of the
shear layer.

Both Reynolds and Favre (equation (4.1)) p.d.f.s can be calculated from the present
DNS and compared. Figure 14 shows such a comparison for case C, at values of
x2 corresponding to four different values of the mean. The means taken here for
P (Z) are Z̄, while those for P̃ (Z) are Z̃, so that they actually correspond to slightly
different values of x2; if this is not done, the same values of x2 being used, then the
Reynolds and Favre curves are shifted slightly with respect to each other because of
the different values of the two means. Figure 14 shows that P (Z) and P̃ (Z) are very
nearly the same. That they exhibit the same features is consistent with experimental
results in hydrogen–air jet flames by Kennedy & Kent (1978). The only significant
difference between Favre and Reynolds p.d.f.s of figure 14 occurs at the average value
of 0.2, which equals Zs . It is understandable that the largest differences occur in the
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Figure 15. Replot of figure 9(b) in terms of the normalized unconditional average scalar
dissipation as a function of the Favre mean scalar Z̃ for simulations A, B and C.

vicinity of the flame sheet because this is where the largest density fluctuations will
occur. The Favre p.d.f. there is seen to be narrower and more sharply peaked than
the Reynolds p.d.f., in agreement with the experimental observations of Kennedy &
Kent (1978). The asymmetry of the four curves, those for 0.4 differing from those for
0.6 and 0.2 differing from 0.8, is associated with the asymmetry of the density profiles
seen in figure 5.

8. Conditional scalar dissipation
As indicated in the introduction, the conditionally averaged scalar dissipation,

〈χ |Z〉 of (1.2), is of greater interest than the profiles of the unconditioned average
scalar dissipation shown in figure 9(b). This is because of the relevance of the former
to the averaged reaction rate and its appearance in various modelling approaches.
Statistics of the dependence of χ on Z are in general of great interest in turbulent
combustion. Replotting figure 9(b) in terms of the averaged mixture fraction instead
of x2/δω is indicative but misleading. Figure 15 is a Favre version of such a plot.
Since the curve for Q = 0 must be symmetrical about Z̃ = 0.5, the departures from
this symmetry seen in the figure are indicative of the magnitude of deviations from
the expected value in the computed DNS averages; the small hump on the right
in this figure corresponds to the hump on the left in figure 9(b). The three similar
bell-shaped curves in figure 15 look very much like those of χ as a function of Z in
steady laminar counterflow mixing, thereby suggesting a possible ensemble of quasi-
steady laminar counterflow diffusion flamelets, with the corresponding dependence
χ(Z) applying locally everywhere on a space–time-resolved basis. This view, however,
is entirely false, as study of the conditional dissipation will reveal.

The conditional average, 〈χ |Z〉, depends on x2 in these flows. Although it is possible,
in principle, to calculate this directly from the DNS data, the need to address the two
variables, χ and Z, degrades the statistics. Calculations were made using data at ten
different instants of time in the late-time evolution to obtain ensemble averages with
reduced fluctuations, and the results suggested that the dependence on x2 was not
large, especially if Q 
= 0. The dependence of 〈χ |Z〉 on x2 was largest for Q = 0
and mainly for the more extreme values of Z (Z < 0.2 and Z > 0.8). It proved to be
easier to make accurate calculations of the product 〈χ |Z〉P (Z) at different x2-planes
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Figure 17. Normalized conditional average scalar dissipation for simulations A, B and C.

because the additional factor P (Z) suppresses rare events with large fluctuations.
This product,

∫ ∞
0

χP (χ, Z)dχ according to (1.2), shown in figure 16 for cases A and

C, at five different x2-planes corresponding to the five different values of Z̄ listed,
also appears directly in the average reaction rate and has been used specifically in
modelling (Kollmann & Janicka 1982), so that it is of interest in itself. Accuracy of the
curves in figure 16 may be judged from the fact that for Q = 0 (figure 16a) the curves
for Z̄ = 0.1 and Z̄ = 0.9 must be situated symmetrically about Z = 0.5, as must
the curves for Z̄ = 0.3 and Z̄ = 0.7. Division of the curves in figure 16 by the P (Z)
curves of figure 12 generates curves of 〈χ |Z〉, which by this alternative method also
are found not to depend too strongly on x2. The relative weak x2 dependence makes
averages taken over the entire computational volume relevant, and such averages
have greatly reduced statistical scatter. For this reason they have also been used
in measurements of turbulent hydrogen jet flames (Chen & Mansour 1997), where
experimental evidence for the weak dependence on position was obtained. Neglect of
the x2 dependence has also been useful in modelling (Li & Bilger 1993).

Figure 17 shows 〈χ |Z〉 averaged over the total volume and over about 10 different
instants of time for all three simulations at late time. The normalizing factor δω/�u
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Figure 18. Replot of figure 9(a) in terms of the unconditional scalar variance as a function
of the Favre average scalar (cases A, B and C).

helps to remove any Reω dependence. The difference between figure 17 and figure 15
is striking. The dissipation curves in figure 17 are shaped much more like the variance
curves in figure 9(a) than the dissipation curves in figure 15, as may be seen by
replotting the variance as a function of Z instead of x2/δω. Figure 18 directly compares
the corresponding Favre version of figure 9(a) for cases A, B and C, the results being
essentially the same as they would have been if the Reynolds version had been used
instead. The most notable observation is the substantial effect of heat release on these
curves. The double hump in the variance for Q = 0 in figure 9(a) is well established,
not only here but also in other work (Fiedler 1974; Miller et al. 1994), and it has
been interpreted in terms of scalar intermittency as resulting from engulfment being
more dominant near the edges of the mixing layer, resulting in somewhat larger
scalar fluctuations there. The heat release eliminates this effect by establishing the
low-density central region and also removes the symmetry about Z̃ = 0.5 by shifting
the variance peak towards the mean stoichiometric surface, where fluctuations are
largest. The tracking of these position-dependent phenomena by the volume-averaged
conditional mean dissipation, quite a different statistical quantity, must be a reflection
of the conditional mean dissipation being largest for values of mixture fraction about
which the variance is largest, irrespective of where these values may occur in the field.
The difference between the two curves with Q 
= 0 in figure 17 is not statistically
significant; a relatively small amount of heat release completely removes the double-
hump character, eliminating the tendency towards achieving nearly constant 〈χ |Z〉
over most Z (0.2 � Z � 0.8) and generating instead a bell-shaped curve with peaks
skewed towards (but not reaching) the stoichiometric value Zs . The skewing is more

pronounced for 〈χ |Z〉 than for Z̃′′2, peaks of the conditional quantity being somewhat
farther from 0.5. The large effect of Q on 〈χ |Z〉 is removed when this quantity is
multiplied by P (Z) (figure 16), which suggests that it may be easier to model the
product directly.

Modelling can be facilitated if 〈χ |Z〉 is nearly independent of Z for most of the
range of Z, as it is in figure 17 for Q = 0. This enables the approximation 〈χ |Z〉 = χ̄

to be introduced, an approximation that would apply if χ and Z were statistically
independent. According to figure 17, such statistical independence is inaccurate for
Q 
= 0, but it might be a reasonable approximation for Q = 0, even though the



316 C. Pantano, S. Sarkar and F. A. Williams

0.02

0.01

0
–0.5 0 1.00.5

A
B
C

0.03

x2/dx

(a)

x· dx

qoDu

(b)

0.02

0.01

0
–0.5 0 1.00.5

0.03

x2/dx

x· dx

qDu

Figure 19. Effect of heat release on average reaction rate profiles: (a) average reaction rate,
(b) average reaction rate normalized by mean density.

boundary conditions imposed on the problem require it to fail as Z approaches 0
or 1, where χ vanishes. There are corresponding inadequacies in neglecting the χ , Z

correlation in homogeneous turbulence, where, for example, it precludes relaxation
of an initially double-delta Z field to its ultimate Gaussian, at which the correlation
vanishes (Eswaran & Pope 1988; Valiño, Dopazo & Ros 1994). The 〈χ |Z〉 profiles in
homogeneous turbulence with Q 
= 0 from the DNS of Mell et al. (1994) are very
similar to ours. The homogeneous-turbulence DNS of Mahalingam et al. (1995), in
which µ increased with T , showed substantial reduction in the magnitude of 〈χ |Z〉
with heat release, much greater than in figure 17 (where µ is constant), probably

because of consequent reduced intensities Z̃′′2, that in our case do not decay.
Experimental profiles of 〈χ |Z〉 in turbulent hydrogen jet flames (Chen & Mansour
1997) closely resemble ours, although a dip in 〈χ |Z〉 at Z = Zs is reported, which
is not observed in our simulation. Measurements of Starner et al. (1997) on diluted
methane and hydrogen jet flames show shapes of 〈χ |Z〉 that are similar to ours
near the external shear layer. The results in figure 17 thus have some independent
computational and experimental support while indicating that with representative
heat release the statistical dependence of χ on Z needs to be taken into account for
accurate modelling.

It is known (Bilger 1980; Williams 1985) that in the Burke–Schumann approxi-
mation the average reaction rate when expressed in mass per unit volume per unit
time is

ω̇ ∝ ρe(Zs)〈χ |Zs〉P (Zs), (8.1)

where the constant of proportionality depends on the chemical species considered. The
characteristic average reciprocal time for the reaction, ω̇/ρe(Zs), can thus readily be
read from figure 16 at Z = Zs . Without heat release, the DNS results are independent
of Zs , and therefore figure 16(a) can be viewed as a graph of this characteristic time
as a function of Zs for various x2-planes. Although this is not true for figure 16(b),
that figure still provides an indication of how this time would vary with Zs in different
planes when Q 
= 0; there is not a great deal of differences between the two figures.
Figure 19 shows profiles of the non-dimensional average reaction rates ω̇δω/(ρo�u)
and ω̇δω/(ρ̄�u) as functions of x2/δω, obtained from the DNS (with Zs = 0.2). The
points at the bottom mark the position x2/δω at which Z̄ = Zs . The curves are not
centred in the middle of the mixing layer but instead move towards the position
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Figure 20. The p.d.f. of the normalized conditional scalar dissipation at Zs for different
levels of heat release. Thick line corresponds to fitted log-normal distributions.

of the average stoichiometric mixture fraction, peaking near but not exactly at that
position; they are shifted slightly towards the centre of the mixing layer by amounts
that increase with increasing Q. The density reduction for Q 
= 0 is seen in figure 19(a)
to greatly reduce the average mass rate of consumption of reactants. Dividing by
the local average density, as in figure 19(b), is seen to largely offset this reduction,
although the rate is still about 40% lower at the largest value of Q than at Q = 0.
This additional effect is associated with the influence of the density change on the
turbulent mixing. Since the profiles in figure 19(b) are also appreciably narrower for
Q 
= 0 than for Q = 0, the reduction in the overall reaction rate, integrated across
the shear layer, caused by the influence of the density decrease on scalar mixing, is
substantial.

Besides the conditional means, the p.d.f. of χ conditioned on Z is of interest. As
seen in (1.2), this is P (χ |Z) = P (χ, Z)/P (Z). The p.d.f.s for χ often are approximated
as log-normal. Such an approximation for χ conditioned on Z being stoichiometric is

P (ln (χδω/�u)|Zs) =
1√
2πσ 2

χ

exp

(
− (ln (χδω/�u) − µχ )2

2σ 2
χ

)
. (8.2)

A measure of the departure from log normality is the skewness factor

Sχ =
(lnχ − 〈lnχ〉)3

σ
3/2
χ

. (8.3)

Figure 20 tests this log normality for all three simulations at late time, employing
DNS data taken over the entire computational domain.

The values of the mean µχ , the standard deviation σχ and the skewness Sχ are
listed in table 4 for all three cases. Figure 20 shows log normality to be a reasonable
approximation. This conclusion has also been obtained experimentally (Nandula et al.
1994; Chen & Mansour 1997; Starner et al. 1997), the latter also indicating a negative
skewness factor, similar to the present results. Measurements and computations like
this pertaining to the conditional p.d.f. are relative sparse; it is well established that
the unconditional p.d.f. is closely log normal (Kerstein & Ashurst 1984; Anselmet &
Antonia 1985; Eswaran & Pope 1988; Pumir 1994; Overholt & Pope 1996).
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Case Q µχ σχ Sk

A 0.0 −5.323 1.716 −0.329
B 3.73 −6.165 1.710 −0.025
C 7.46 −6.021 1.677 −0.027

Table 4. Mean, standard deviation and skewness factor associated with the p.d.f. of
ln(χδω/�u), conditioned at Z = Zs = 0.2 for different levels of heat release.
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Figure 21. Scalar isocontour at Z = Zs for simulation C at late time.

The more negative values of µχ in table 4 for Q 
= 0 reflect the correspondingly
lower averages seen in figure 17. The standard deviations, however, are seen in
table 4 to be essentially independent of Q. The skewness factor in table 4 is larger
in magnitude by more than a factor of 10 for Q = 0 than for Q 
= 0, this difference
also being visible in figure 20. In all cases, however, log normality begins to fail in
the tails (figure 20). In summary, effects of heat release on the conditional p.d.f. of χ

are noticeable but not large.
The conditional scalar dissipation is related to the thickness of the zone about

Z = Zs in which molecular mixing and associated chemistry may occur. Roughly
speaking, this thickness is of order Zs/|∇Z|, the gradient being conditioned on Z = Zs

Williams (1975); Vervisch & Poinsot (1998), and therefore an associated characteristic
length may be defined as l = Zs

√
2D/χ , with D and χ correspondingly conditioned.

Since heat release increases this D and decreases this χ (figure 17), it increases l, but it
otherwise has little effect on the statistics of l, according to the results just described.
The increase of l is visually apparent in figure 11, where contours at Z = Zs ± 0.1
have been thickened. Although there are large fluctuations, the average distance
between these contours is larger in figure 11(b). A three-dimensional rendering of the
stoichiometric surface in case C is given in figure 21, and a closeup of a section of
figure 21, showing grid sizes employed, is shown in figure 22. The following sections
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Figure 22. Zoom of the scalar isocontour at Z = Zs for simulation C at late time with
corresponding mesh.

address in greater detail the structures of the Z and χ fields in the vicinity of this
surface.

9. Statistical aspects of the stoichiometric surfaces and their vicinity
The topology of isoscalar surfaces is central to the validity of assumptions

underlying modelling of non-premixed turbulent combustion. This is especially true
for flamelet approaches that rely on expansions about Z = Zs , but it also applies to
CMC and p.d.f. approaches that deal with averages of χ conditioned on Z. Statistical
aspects beyond those addressed in the preceding section have a bearing on this
topology.

The simplest conceivable configuration is that of a planar stagnant molecular
mixing layer, in which isoscalar surfaces are parallel planes, and

√
D/χ is constant

everywhere. Since this uniformity of |∇Z| from Z = 0 to Z = 1 is unrealistic in
turbulence, steady counterflow laminar flamelet models have been considered, which
maintain parallel planar isoscalar surfaces but have |∇Z| varying smoothly from zero
at Z = 0 or Z = 1 to a maximum near Z = 0.5. In each instantaneous realization
these models have profiles that resemble those of the averages seen in figure 15 in
Z-space and in figure 9(b) in physical space. Turbulence, however, generates much
more complex topology for isoscalar surfaces, causing them to be non-planar and
time-dependent, a fact that is responsible for the known limitations of steady laminar
flamelet models, including those that take into account the linear variation of χ with
Z near Z = Zs . Turbulence can generate more than mild wrinkles in curves like those
of figure 15 on space–time-resolved bases. Ridges can develop, with |∇Z| achieving
minima along certain surfaces, as well as zero-gradient points, where χ = 0 (Gibson
1968). The wrinkles readily produce maxima and minima in instantaneous plots of
χ as a function of Z along paths in the direction of ∇Z, and the minima descend
to χ = 0 at zero-gradient points. Since χ � 0, such plots must in fact end when
χ = 0, turning back on themselves in at least one other maximum-gradient direction,
at maximum and minimum values of Z different from 1 or 0, unless the zero-gradient
point has an inflection type of behaviour instead of being a local absolute extremum.
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These complexities deserve consideration in modelling and are being addressed by
Peters & Trouillet (2002).

A first step in this direction is to study in greater detail the local behaviour of
the Z and χ fields in the vicinity of isoscalar surfaces. Let y be the distance in the
direction normal to the surface Z = Zs , with y > 0 for Z > Zs and y < 0 for Z < Zs .
A Taylor expansion to second order in y then is

Z(y) = Zs + a1y + a2y
2 + O{y3}, (9.1)

where

a1 =

√(
∂Z

∂xi

)2

(9.2)

and

a2 =
1

2

∂2Z

∂xi∂xj

ninj , (9.3)

in which

ni =
1

a1

∂Z

∂xi

(9.4)

is the ith component of a unit vector normal to the surface. All partial derivatives
here are evaluated at the point where Z = Zs . The second coefficient, a2, differs from
the curvature of the isoscalar surface Z = Zs itself, which is

∂ni

∂xi

=
1

a1

(
∂2Z

∂x2
i

− ninj

∂2Z

∂xi∂xj

)
. (9.5)

Both a1 and a2 are random variables in a turbulent flow. Since χ = 2Da2
1 , there

have, in effect, been numerous statistical studies of a1, but a2 has been relatively
neglected. The expansion of χ about Z = Zs , however, depends on a2. To first order
in (Z − Zs),

χ = χs +
dχ

dZ

∣∣∣∣
Z=Zs

(Z − Zs) + O{(Z − Zs)
2}, (9.6)

where

dχ

dZ

∣∣∣∣
Z=Zs

= 4D
d2Z

dy2
+ 2

dD

dZ

(
dZ

dy

)2

= 8Da2 + 2
dD

dZ
a2

1, (9.7)

the last term of which may be neglected because D typically reaches a maximum very
near Z = Zs . The good approximation

a2 =
1

8Ds

dχ

dZ

∣∣∣∣
Z=Zs

(9.8)

thus relates a2 to the slope of the curve of χ as a function of Z at Z = Zs . Since,
according to (9.8), stagnant mixing-layer flamelet models have a2 = 0, while steady
counterflow laminar flamelet models with Zs < 0.5 have a2 > 0, the statistics of a2

pertains to the potential applicability of these models.
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Figure 23. Conditional average of a2 for different levels of heat release normalized
with vorticity thickness.

Another reason for interest in a2 is its relevance to limitations on the use of the
characteristic length

l = Zs

√
2Ds

χs

=
Zs

a1

(9.9)

identified at the end of the preceding section. This length defines the characteristic
distance over which Z varies by a fractional amount of order unity only when the
quadratic term in (9.1) is small compared with the linear term. This condition breaks
down when |y| becomes of order

d =
a1

|a2| . (9.10)

The departure of Z from Zs at this limit is

�Z = Zs

d

l
= a1d =

a2
1

|a2| , (9.11)

which may be called the limiting scalar deviation in that Z ceases to vary linearly
with distance y for distances beyond the value at which this deviation occurs. It thus
is a measure of the amplitude of wrinkles of curves of Z as a function of distance
normal to isoscalar surfaces, and we shall refer to d as a wrinkling length scale, or
simply a wrinkle length. This limiting deviation and the associated limiting length, d ,
which is the characteristic linear dimension or length of such wrinkles, are random
variables having statistics determined by those of a1 and a2. The statistics of a1 and
a2, conditioned on Z = Zs , thus have a bearing on a number of questions.

Graphs of the conditional average of χ as a function of Z have been shown
in figure 17. These averages are basically equivalent to conditioned averages of a1.
Figure 23 shows corresponding graphs of conditional averages of a2. For Q = 0 they
are antisymmetric about Z = 0.5, as they must be (see (9.8), for example). They are
also very nearly antisymmetric for Q 
= 0, suggesting that, although the dynamics
correspond to Zs = 0.2 in these cases, contrary to figure 17 for a1, the asymmetry
of the density field has little effect on a2, thereby allowing any value of Z to be
interpreted as Zs . The density change has little effect on 〈a2|Z〉 for 0.3 � Z � 0.7,
but there are noticeable influences in the extremes representative of hydrocarbon–air
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Figure 24. Conditional p.d.f. of a2 at the stoichiometric surface for different levels
of heat release.

combustion. The conditioned means all peak near Z = 0.1, but the peak for Q = 0 is
much higher that those for Q 
= 0. The heat release of combustion therefore reduces
a2, which would tend to increase the limiting scalar deviation, �Z, and the wrinkle
length, d . This last tendency, however, tends to be offset by the influence of a1 which,
as shown before, decreases when Q 
= 0.

Conditional p.d.f.s for a2 at Zs = 0.2 are shown in figure 24. After scaling by the
factor 1 + Q, they do not vary much with Q, and they tend to have approximately
exponential tails, being neither Gaussian nor log-normal. The factor 1 + Q helps
because the singularity of the density at Z = Zs raises the peak of the p.d.f. Although
there have been simulation-based studies of scalar fields and their gradients in non-
premixed turbulence, Ashurst et al. (1987), p.d.f.s for second-derivative quantities
like a2 have been addressed through DNS only for premixed turbulent combustion
(Shepherd & Ashurst 1992; Ashurst & Shepherd 1997); these last studies were focused
on the curvature ∂ni/∂xi because of its influence on premixed flame-front propagation,
but the general shapes of the resulting p.d.f.s are remarkably similar to figure 24.
It would be of interest in the future to extract p.d.f.s of curvature from the present
database to help explain the shapes seen in figures 21 and 22, which have smoother
regions of smaller curvature extending towards the Z = 0 boundary with sharper
points of higher curvature protruding towards the fuel side, possibly because of the
shearing effects on the isoscalar surface in the shear layer.

In figure 24, it is interesting that the mode, while positive, is nearly at a2 = 0, and
there is an appreciable probability that a2 is negative in all cases. The probability that
a2 > 0 is approximately 0.6, independent of Q. This means, according to (9.8), that
(dχ/dZ)Z=Zs

is negative nearly as often as it is positive for Zs = 0.2 in these flows.
Instantaneous profile shapes of the scalar dissipation in the laminar flamelet form of
figure 15 thus are the exception rather than the rule. Instantaneous profiles of χ(Z)
at these high Reynolds numbers therefore are highly irregular, with (dχ/dZ)Z=Zs

= 0
probably being a better approximation than any counterflow flamelet model. There
is a greater probability for a2 to be positive at smaller values of Z; for example, for
Z = 0.05 it was found that this probability is about 0.9 for Q = 0 and about 0.7
for Q 
= 0, but even these values imply that a reasonable fraction of the realizations
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Figure 25. Conditional p.d.f. of �Z at Z = Zs for different levels of heat release.

Case Q µZ σZ (�Z)m �Z

A 0.0 −1.399 1.605 0.247 0.898
B 3.73 −1.999 1.452 0.135 0.388
C 7.46 −1.733 1.368 0.177 0.451

Table 5. Parameters of the conditional �Z p.d.f. fit to a log-normal distribution at Z = Zs .
Here (�Z)m denotes the most probable value and �Z the expected value of �Z, conditioned
at Z = Zs .

have a2 < 0. More research therefore is needed in modelling χ(Z) in turbulent
combustion.

Since the wrinkle length of (9.10) is non-negative by definition, it is reasonable to
consider approximating its p.d.f. as log normal. Such an approximation does indeed
work well for d , as it also does for �Z of (9.11). The latter agreement is demonstrated
in figure 25. With

P (�Z|Zs) =
1√
2πσ 2

Z

exp

(
− (ln (�Z) − µZ)2

2σ 2
Z

)
, (9.12)

for Zs = 0.2 the parameters µZ and σZ are listed in table 5, as are the mean �Z and
the mode (�Z)m in the p.d.f. of �Z itself. It is seen that heat release greatly reduces
the magnitude of the limiting scalar deviation at this Zs and also decreases its variance
somewhat, increasing the height of the peak of its p.d.f. This is a consequence of the
associated decrease of |∇Z|, since in the identity �Z = |∇Z|d , the wrinkle length d

is actually increased somewhat by heat release at this Zs , tending to slightly increase
the range of applicability of flamelet concepts with increasing Q, a tendency which is
offset by the decrease in |∇Z|. Comparing the �Z values in table 5 with the value of
Zs , namely 0.2, indicates that flamelet concepts are less applicable on average with
heat release, although the decreasing variance may help to increase the fraction of
realizations to which flamelet concepts apply. These changes with Q are results of the
density reduction influencing the turbulence and are not associated with changes in
viscosity or molecular diffusivities.
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Figure 26. Conditional p.d.f. of d at Z = Zs for simulation B at a turbulence Reynolds
number Ret from about 400 to 600; the wrinkle length is normalized by (a) ηZ and (b) λZ .

Finally, it is of interest to consider how the statistics of the limiting scalar deviations
�Z may scale with Reynolds number. If the wrinkle length d is of the order of the
Taylor scale of the Z field, λZ =

√
Ds/χ̃ , then according to (9.11) �Z is independent

of Reynolds number, since a1 scales as
√

χ̃/Ds . But if d instead is of the order
of the Corrsin scale, ηZ = (D3

s /ε̃)
1/4, as may be expected from its definition, then

�Z scales as Zk/Sc1/4, where the order of magnitude of the scalar variations at
the Kolmogorov scale, Zk = (χ̃2νs/ε̃)

1/4, scales as Re
−1/4
t , the turbulence Reynolds

number, proportional to Reω of (3.29), being defined here as Ret = k̃2/(νsε̃). More
precisely, from (6.1)–(6.3),

Zk = Z′′21/2
r1/2/Re

1/4
t ,

but the dominant scaling variation for �Z in this last result is the inverse fourth-root
dependence on Reynolds number. Bilger (2000) asserts that the root-mean-square

value of 4Ds |a2| is approximately 3.5Dsa
2
1Sc1/4/Zk , equivalent to the scaling Zk/Sc1/4

for �Z, as can be seen from (9.11), and he points out the consequent inverse
fourth-root dependence on Ret . An attempt can be made to use the present DNS
results to test these two different scaling hypotheses because Reω varies with time
during the simulation, as previously indicated. Figure 26 shows p.d.f.s for the wrinkle
length scaled with (a) ηZ and (b) λZ with data from simulation B at different times;
conclusions from the other two simulations are similar. The curves collapse better
with ηZ than with λZ , supporting Bilger’s result. Corresponding curves employing
δω instead show much less agreement, indicating that the integral scale is certainly
inappropriate, as expected. Although it clearly is most reasonable that ηZ is best,
implying the Re

1/4
t scaling for �Z, because of the small range of Ret , the small power

and possible effects of time evolution and initial conditions, the conclusions from the
present simulations are not definitive in this respect.

10. Conclusions
The shear layer between two streams with relative velocity and exothermic chemical

reaction is studied with DNS on grids with up to 40 million grid points. The
chemical reaction of diluted methane with air is considered with a stoichiometric
mixture fraction of Zs = 0.2. The assumption of infinitely fast chemistry is made
to obtain turbulent flow with reasonably large Reynolds number. The level of heat
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release is varied from zero to full heat release, Tf /To � 7, for the stoichiometry
considered. The main objective of the current study is to evaluate the influence
of heat release on the scalar field, in particular the mixing properties relevant to
modelling flow/chemistry interaction in non-premixed turbulent combustion. Large
computational domains, large computational grids, and broadband initial conditions
ensure that the application of a high-order numerical scheme results in a simulated
flow that corresponds to full-blown turbulence. The Reynolds number based on
vorticity thickness is as large as 12 000.

It is shown that the effect of heat release on the profiles of unconditional scalar
dissipation is minimized when the vorticity thickness, not the momentum thickness, is
used as the characteristic length scale for normalization. In the shear layer, the peak
values are characterized by χpeak � 0.012�u/δω.

The effect of heat release on the mixing properties of the shear layer is studied.
Results are shown for the behaviour of the scalar p.d.f. and scalar dissipation
conditioned on the scalar. It is shown that, unlike the constant-density case, the
average scalar dissipation conditioned on the scalar depends strongly on the scalar
value in the cases with heat release. These results have important implications for
modelling purposes.

It is found that with heat release the scalar p.d.f. has a peak that is well correlated
with the location of the expected value of the scalar, but without heat release the peak
of the p.d.f. and the location of the mean value are poorly correlated. Furthermore,
mean profiles of velocity and scalar differ for Reynolds and Favre forms by amounts
that increase with increasing heat release. The effect is more pronounced on the scalar
than on the velocity profiles because of the strong correlation between the density
and the scalar.

The effect of heat release on the cross-stream profile of average reaction rate per
unit volume is also studied. It is found that the peak reaction rate decreases with
increasing heat release, and the profiles become narrower. The decrease is due to both
the decrease of density and the change in scalar mixing with respect to passive scalar
mixing.

A new random variable a2, (9.3), relevant to variations of Z and χ in the vicinity
of stoichiometric surfaces is defined, and its statistical properties are investigated. A
wrinkle length is defined in terms of χ and a2, representing the distance normal to a
stoichiometric surface beyond which Z ceases to vary linearly with normal distance.
This length increases with χ and also increases somewhat with heat release. The
associated scalar deviation, however, is smaller with heat release, so that heat release
may tend to reduce the applicability of flamelet models. Moreover, steady flamelet
models are inapplicable for an appreciable fraction of the flamelets because, for
example, there is a significant probability that dχ/dZ < 0 for Z < 0.5, contrary to the
laminar flamelet prediction that dχ/dZ > 0 for Z < 0.5. Turbulence at high Reynolds
number greatly distorts instantaneous χ(Z) profiles. Further study of the topology
of isoscalar surfaces and of variations of Z and χ normal to these surfaces in flows
with density changes typical of combustion may suggest improved descriptions of
reaction zones at high Damköhler and Reynolds numbers in non-premixed turbulent
combustion.
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Montgomery, C., Kosály, G. & Riley, J. 1993 Direct numerical simulation of turbulent reacting
flow using a reduced hydrogen–oxygen mechanism. Combust. Flame 95, 247–260.
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